skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blackwelder, Patricia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change-driven ocean warming is increasing the frequency and severity of bleaching events, in which corals appear whitened after losing their dinoflagellate endosymbionts (family Symbiodiniaceae). Viral infections of Symbiodiniaceae may contribute to some bleaching signs, but little empirical evidence exists to support this hypothesis. We present the first temporal analysis of a lineage of Symbiodiniaceae-infecting positive-sense single-stranded RNA viruses (“dinoRNAVs”) in coral colonies, which were exposed to a 5-day heat treatment (+2.1 °C). A total of 124 dinoRNAV major capsid protein gene “aminotypes” (unique amino acid sequences) were detected from five colonies of two closely related Pocillopora-Cladocopium (coral-symbiont) combinations in the experiment; most dinoRNAV aminotypes were shared between the two coral-symbiont combinations (64%) and among multiple colonies (82%). Throughout the experiment, seventeen dinoRNAV aminotypes were found only in heat-treated fragments, and 22 aminotypes were detected at higher relative abundances in heat-treated fragments. DinoRNAVs in fragments of some colonies exhibited higher alpha diversity and dispersion under heat stress. Together, these findings provide the first empirical evidence that exposure to high temperatures triggers some dinoRNAVs to switch from a persistent to a productive infection mode within heat-stressed corals. Over extended time frames, we hypothesize that cumulative dinoRNAV production in the Pocillopora-Cladocopium system could affect colony symbiotic status, for example, by decreasing Symbiodiniaceae densities within corals. This study sets the stage for reef-scale investigations of dinoRNAV dynamics during bleaching events. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract The equatorial North Atlantic Ocean (NAO) is a nutrient‐limited ecosystem that relies on the deposition of long‐range transported iron (Fe)‐containing aerosols to stimulate primary productivity. Using microscopy, we characterized supermicron and supercoarse mode African aerosols transported to the western NAO in boreal winter/spring. We detected three particle types including African dust, primary biological aerosol particles, and freshwater diatoms (FDs). FDs contained 4% Fe by weight due to surficial dust inclusions that may be susceptible to chemical processing and dissolution. FDs were typically larger than dust particles and comprised 38% of particles between 10 and 18 μm in diameter. The low density, high surface‐area‐to‐volume ratio, and large aspect ratios of FD particles suggest a mechanism by which they can be carried great distances aloft. These same properties likely increase the residence time of FDs in surface waters thereby increasing the time for Fe dissolution and their potential impact on marine biogeochemical cycles. 
    more » « less